An augmented Lagrangian decomposition method for quasi-separable problems in MDO
نویسندگان
چکیده
منابع مشابه
An interior-point Lagrangian decomposition method for separable convex optimization
In this paper we propose a distributed algorithm for solving large-scale separable convex problems using Lagrangian dual decomposition and the interior-point framework. By adding self-concordant barrier terms to the ordinary Lagrangian we prove under mild assumptions that the corresponding family of augmented dual functions is self-concordant. This makes it possible to efficiently use the Newto...
متن کاملSeparable Approximations and Decomposition Methods for the Augmented Lagrangian
In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczyński [13] and the Parallel Coordinate Descent Method (PCDM) of Richtárik and Takáč [23]. We show that the two methods are equivalent for feasibility problems up to the s...
متن کاملAn augmented Lagrangian coordination method for distributed optimal design in MDO: Part I formulation and algorithms
Quite a number of coordination methods have been proposed for the distributed optimal design of large-scale systems consisting of a number of interacting subsystems. Several coordination methods are known to have numerical convergence difficulties that can be explained theoretically. The methods for which convergence proofs are available have mostly been developed for so called quasi-separable ...
متن کاملAn Augmented Lagrangian Method for Optimization Problems in Banach Spaces
We propose a variant of the classical augmented Lagrangian method for constrained optimization problems in Banach spaces. Our theoretical framework does not require any convexity or second-order assumptions and allows the treatment of inequality constraints with infinite-dimensional image space. Moreover, we discuss the convergence properties of our algorithm with regard to feasibility, global ...
متن کاملOn Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming
The augmented Lagrangian method (ALM) is a benchmark for solving a convex minimization model with linear constraints. We consider the special case where the objective is the sum of m functions without coupled variables. For solving this separable convex minimization model, it is usually required to decompose the ALM subproblem at each iteration into m smaller subproblems, each of which only inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structural and Multidisciplinary Optimization
سال: 2006
ISSN: 1615-147X,1615-1488
DOI: 10.1007/s00158-006-0077-z